期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Physical Sience and Technical Research. 2022; 2: (1) ; 36-44 ; DOI: 10.12208/j.pstr.20220006.

Polyakov loop effects on the Fermi distribution and thermodynamic potential functions
Polyakov圈效应对费米分布和热力学势函数的影响

作者: 卢琪, 麻志君 *, 陆振烟, 赵宇清, 付响云

湖南科技大学物理与电子科学学院 湖南湘潭

湖南科技大学物理与电子科学学院 智能传感器与新型传感材料湖南省重点实验室 湖南湘潭

*通讯作者: 麻志君,单位:湖南科技大学物理与电子科学学院 智能传感器与新型传感材料湖南省重点实验室 湖南湘潭;

发布时间: 2022-07-29 总浏览量: 1077

摘要

作为描述自旋为半整数粒子最概然分布的费米分布函数,在物理学及其他自然科学领域获得广泛应用。为描述强作用物质禁闭和解禁闭现象而将Polyakov圈引进量子色动力学低能有效模型之后,费米分布函数被修正。通过比较和分析费米分布函数的标准形式与包含Polyakov圈效应后的修正形式,详细讨论二者的差别并探究二者随粒子能量与化学势的差值、温度和动量的变化行为。从数值上看,虽然修正后的费米分布函数与其标准形式有所不同,但仍然严格满足泡利不相容原理,即每个量子态上的平均粒子数仍处在[0,1]范围内。最后详细讨论Polyakov圈效应对夸克热力学势函数的影响。

关键词: 分布函数,QCD有效模型,热力学,Polyakov圈

Abstract

The Fermi distribution function, as the most probable distribution of a particle system with half-integer intrinsic spin, has been widely used in physics and other natural sciences. However, to describe the deconfinement phase transition of strongly interacting matter, the Polyakov loop is introduced to the QCD low-energy models, and the Fermi distribution function is modified. By comparing and analyzing the standard form of the Fermi distribution function with the modified one, the differences between the two are discussed and their behaviors with the difference between particle energy and chemical potential, temperature, and momentum are explored. It is found that although the modified Fermi distribution function is analytically different from its standard form, it still strictly satisfies the Pauli exclusion principle, that is, the average number of particles in each quantum state is in the range [0,1]. Finally, the influence of the Polyakov loop effects on the thermodynamic potential function is also discussed in details.

Key words: Distribution function, QCD effective models, Thermodynamic, Polyakov loop

参考文献 References

[1] S. Bethke, Prog. Part. Nucl. Phys. 58, 351 (2007).

[2] J. Ghiglieri, A. Kurkela, M. Strickland, and A. Vuorinen, Phys. Rept. 880, 1 (2020).

[3] J. F. Xu, G. X. Peng, Z. Y. Lu, S. S. Cui, Sci. China Phys. Mech. Astron. 58, 042001 (2015).

[4] J. F. Xu, G. X. Peng, F. Liu, D. F. Hou, L. W. Chen Phys. Rev. D 92, 025025 (2015).

[5] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961a) 88; Phys. Rev. 124, 246 (1961b).

[6] T. Hatsuda and T. Kunihiro, Phys. Rept. 247, 221 (1994).

[7] Z. Y. Lu, C. J. Xia, and M. Ruggieri, Eur. Phys. J. C 80, 46 (2020).

[8] R. Gatto and M. Ruggieri, Phys. Rev. D 85, 054013 (2012).

[9] Z. Y. Lu, M. L. Du, F. K. Guo, U. G. Meißner, T Vonk, JHEP 05, 001 (2020).

[10] C. G. Grilli, E. Hardy, V. J. Pardo, G. Villadoro, JHEP 01, 034 (2016).

[11] S. Borsanyi, Z. Fodor, J. Guenther, K. H. Kampert, S. D. Katz, T. Kawanai, T. G. Kovacs, S. W. Mages, Pasztor A, F.Pittler, J. Redondo, A. Ringwald, K. K. Szabo, Nature 539, 69 (2016).

[12] Z. Y. Lu and M. Ruggieri, Phys. Rev. D 100, 014013 (2019).

[13] S. S. Avancini, A. Bandyopadhyay, D. C. Duarte, and R. L. S. Farias, Phys. Rev. D 100, 116002 (2019).

[14] B. S. Lopes, S. S. Avancini, A. Bandyopadhyay, D. C.Duarte, and R. L. S. Farias, Phys. Rev. D 103, 076023 (2021).

[15] Q. Lu, W. J. Chen, Z. Y. Lu, Y. Xu, X. Q. Li, Acta Phys. Sin., 2021, 70(14): 145101 (in Chinese) [卢琪, 陈伟杰, 陆振烟, 许英, 李向前. 物理学报, 2021, 70(14): 145101.]

[16] M. Buballa, Phys. Rep. 407, 205 (2005).

[17] P. N. Meisinger, M. C. Ogilvie. Phys. Lett. B 379, 163-168 (1996).

[18] K. Fukushima, Phys. Lett. B 591, 277 (2004) .

[19] C. Ratti, M. A. Thaler, and W. Weise, Phys. Rev. D 73, 014019 (2006).

[20] Z. Zhang and Y. X. Liu, Phys. Rev. C 75, 064910 (2007).

[21] K. Fukushima, Phys. Rev. D 77, 114028 (2008), [Erratum: Phys.Rev.D 78, 039902 (2008)].

[22] K. Fukushima, M. Ruggieri, and R. Gatto, Phys. Rev. D 81, 114031 (2010).

[23] R. Gatto and M. Ruggieri, Phys. Rev. D 82, 054027 (2010).

[24] R. Gatto and M. Ruggieri, Phys. Rev. D 83, 034016 (2011).

[25] R. Gatto and M. Ruggieri, Lect. Notes Phys. 871, 87 (2013).

[26] M. Chernodub and A. Nedelin, Phys. Rev. D 83, 105008 (2011).

[27] B. J. Schaefer, J. M. Pawlowski, and J. Wambach, Phys. Rev. D 76, 074023 (2007).

[28] J. Xiong, M. Jin, and J. Li, J. Phys. G 36, 125005 (2009).

[29] G. Y. Shao, X. Y. Gao, Z. D. Tang, and N. Gao, Nucl. Sci. Tech. 27, 151 (2016).

[30] Z. T. Tang, G. Y. Shao, X. Y. Gao, N. Gao, W. B. He, Nucl. Phys. Rew., 2017, 34: 575-579 (in Chinese) [唐占铎, 邵国运, 高雪艳, 高宁, 贺伟博. 原子核物理评论, 2017, 34: 575-579.]

[31] S. Roessner, C. Ratti, W. Weise, Phys. Rev. D, 75, 034007 (2007).

[32] B. Svetitsky and L. G. Yaffe, Nucl. Phys. B 210, 423 (1982).

[33] L. Y. He, M. Jin, and P. F. Zhuang, Phys. Rev. D 71, 116001 (2005).

[34] Sasaki T, Sakai Y, Kouno H, Yahiro M. Phys. Rev. D 82, 116004 (2010).

[35] Y. Wang and X. J. Wen, J. Phys. G 47, 105201 (2020).

[36] O. Ivanytskyi, M. A. Perez-Garca, V. Sagun, and C. Albertus, Phys. Rev. D 100, 103020(2019).

[37] Y. P. Zhao, Phys. Rev. D 101, 096006 (2020).

[38] Z. Li, K. Xu, X. Wang, and M. Huang, Eur. Phys. J. C 79, 245 (2019).

[39] W. J. Fu, Z. Zhang, and Y. X. Liu, Phys. Rev. D 77, 014006 (2008).

[40] X. Li, W. J. Fu, and Y. X. Liu, Phys. Rev. D 99, 074029 (2019).

[41] N. Chaudhuri, S. Ghosh, S. Sarkar, and P. Roy, Eur. Phys. J. A 56, 213 (2020).

[42] B. J. Cai and B. A. Li, Phys. Rev. C 92, 011601 (2015).

[43] B. J. Cai and B. A. Li, Phys. Lett. B 757, 79 (2016).

[44] B. A. Li, B. J. Cai, L. W. Chen, and X. H. Li, Nucl. Sci.Tech. 27, 141 (2016).

[45] J. X. Hou, Physics and Engineering 31(1): 31-32, 36 (2021) (in Chinese) [侯吉旋. 物理与工程 31(1): 31-32, 36 (2021).]

引用本文

卢琪, 麻志君, 陆振烟, 赵宇清, 付响云, Polyakov圈效应对费米分布和热力学势函数的影响[J]. 物理科学与技术研究, 2022; 2: (1) : 36-44.