参考文献 References
[1]Tang C W, VanSlyke S. Organic electroluminescent diodes[J]. Appl Phys Lett, 1987, 51(12): 913-915.
[2]Zhou X,Pfeiffer M,Blochwitz J,et al. Very-low-operating-voltageorganic light-emittingdiodesusingap-dopedamorphousholeinjectionlayer[J].ApplPhys Lett,2001,78(4): 410-412.
[3]Jabbour G E, Kipplen B,Armstrong N R,et al.Alumiumbasedcathodestructure forenhanced electron injection in electroluminescent organic devices[J].ApplPhysLett,1998, 73(9): 1185-1187.
[4]Liu S Q, Li J, Du C L,etal.Evaluation and prediction of color-tunable organic light-emitting diodes based on carrier/exciton adjusting interlayer[J].ApplPhysLett, 2015, 107(4): 041109.
[5]Kim H G, Kim K H, Kim J J, etal. Highly efficient, conventional, fluorescent organic light-emitting diodes with extended lifetime[J]. Adv Mater, 2017, 29(39):1702159.1-1702159.6.
[6]Sohn S, Kim M J, Jung S,et al. Molecular orientation of a new anthracene derivative for highly-efficient blue fluorescence OLEDs[J]. Org Electron, 2015, 24:234-240.
[7]Baldo M A, O'Brien D F, You Y J, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395(6698):151-154.
[8]ThompsonM E, Lamansky S, Djurovich P, etal. High-efficiency organic electro-phosphorescent devices[J]. IntSoc OptPhoton, 2001, 4105:119-124.
[9]Ha Y, Seo J H, Kim Y K. Toward the saturated red phosphorescence for OLED: new iridium complexesof 2,3-bis(4-fluorophenyl)quinoxaline derivatives[J]. Synthetic Met, 2008, 158(13):548-552.
[10]Ikai M, Tokito S, Sakamoto Y, et al. Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer[J]. Appl Phys Lett, 2001, 79(2): 156-158.
[11]Kessler F, Watanabe Y, Sasabe H, et al. High-performance pure blue phosphorescent OLED using a novel bis-heteroleptic iridium(III) complex with fluorinated bipyridyl ligands[J]. J Mater Chem C, 2013, 1(6): 1070-1075.
[12]Flämmich M, Frischeisen J, Setz D S, et al. Oriented phosphorescent emitters boost OLED efficiency[J]. Org Electron, 2011, 12(10): 1663-1668.
[13]Ho C L, Li H, Wong W Y. Red to near-infrared organometallic phosphorescent dyes for OLED applications[J]. J Organomet Chem, 2014, 751: 261-285.
[14]Endo A, Ogasawara M, Takahashi A, et al. Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light emitting diodes-a novel mechanism for electroluminescence[J]. Adv Mater, 2009, 21(47): 4802-4806.
[15]Woon K L, Yi C L, Pan K C, et al. Intramolecular Dimerization Quenching of Delayed Emission in Asymmetric D-D′-A TADF Emitters[J]. J Phys Chem C, 2019, 123(19): 12400-12410.
[16]Goushi K, Yoshida K, Sato K, et al. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion[J]. Nat Photonics, 2012, 6(4): 253-258.
[17]Goushi K, Adachi C. Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes[J]. Appl Phys Lett, 2012, 101(2): 023306.
[18]Hermann C. The international commission on illumination-CIE: what it is and how it works[C]//symposium-international astronomical union. Camb Univ Press, 2001, 196: 60-68.
[19]Malatong R, Kaiyasuan C, Nalaoh P, et al. Rational design of anthracene-based deep-blue emissive materials for highly efficient deep-blue organic light-emitting diodes with CIEy≤0.05[J]. Dyes Pigments, 2021, 184: 108874.
[20]Wang S, Qiao M, Ye Z, et al. Efficient deep-blue electrofluorescence with an external quantum efficiency beyond 10%[J]. Iscience, 2018, 9: 532-541.
[21]Zhu M, Yang C. Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes[J]. Chem Soc Rev, 2013, 42(12): 4963-4976.
[22]Chen D, Wang Z, Wang D, et al. Efficient exciplex organic light-emitting diodes with a bipolar acceptor[J]. Org Electron, 2015, 25: 79-84.
[23]Sarma M, Wong K T. Exciplex: an intermolecular charge-transfer approach for TADF[J]. ACS Appl Mater Inter, 2018, 10(23): 19279-19304.
[24]Bichenkova E V, Sardarian A, Savage H E, et al. An exciplex-based, target-assembled fluorescence system with inherently low background to probe for specific nucleic acid sequences[J]. Assay Drug Dev Techn, 2005, 3(1): 39-46.
[25]Kim H B, Kim J J. Recent progress on exciplex-emitting OLEDs[J]. J Inform Display, 2019, 20(3): 105-121.
[26]Kattnig D R, Rosspeintner A, Grampp G. Magnetic field effects on exciplex-forming systems: the effect on the locally excited fluorophore and its dependence on free energy[J]. Phys Chem Chem Phys, 2011, 13(8): 3446-3460.
[27]Gould I R, Farid S, Young R H. Relationship between exciplex fluorescence and electron transfer in radical ion pairs[J]. J Photochem Photobio A: Chem, 1992, 65: 133-147.
[28]Heissenbüttel M C, Marauhn P, Deilmann T, et al. Nature of the excited states of layered systems and molecular excimers: Exciplex states and their dependence on structure[J]. Phys Rev B, 2019, 99(3): 035425.
[29]Zhang M, Zheng C J, Lin H, et al. Thermally activated delayed fluorescence exciplex emitters for high-performance organic light-emitting diodes[J]. Mater Horiz, 2021, 8(2): 401-425.
[30]Jankus V, Chiang C J, Dias F, et al. Deep blue exciplex organic light-emitting diodes with enhanced efficiency; P-type or E-type triplet conversion to singlet excitons?[J]. Adv Mater, 2013, 25(10): 1455-1459.
[31]Park Y S, Kim K H, Kim J J. Efficient triplet harvesting by fluorescent molecules through exciplexes for high efficiency organic light-emitting diodes[J]. Appl Phys Lett, 2013, 102(15): 66.
[32]Hung W Y, Fang G C, Lin S W, et al. The first tandem, all-exciplex-based WOLED[J]. Sci Rep, 2014, 4(1): 1-6.
[33]Zhang T, Zhao B, Chu B, et al. Simple structured hybrid WOLEDs based on incomplete energy transfer mechanism: from blue exciplex to orange dopant[J]. Sci Rep, 2015, 5(1): 1-8.
[34]Oh C S, Kang Y J, Jeon S K, et al. High efficiency exciplex emitters using donor-acceptor type acceptor material[J]. J Phys Chem C, 2015, 119(39): 22618-22624.
[35]Chen Z, Liu X K, Zheng C J, et al. High performance exciplex-based fluorescence-phosphorescence white organic light-emitting device with highly simplified structure[J]. Chem Mater, 2015, 27(15): 5206-5211.
[36]Mamada M, Tian G, Nakanotani H, et al. The importance of excited-state energy alignment for efficient exciplex systems based on a study of phenylpyridinato boron derivatives[J]. Angew Chem, 2018, 130(38): 12560-12564.
[37]Feng D, Dong D, Lian L, et al. High efficiency non-doped white organic light-emitting diodes based on blue exciplex emission[J]. Org Electron, 2018, 56: 216-220.
[38]Chapran M, Pander P, Vasylieva M, et al. Realizing 20% external quantum efficiency in electroluminescence with efficient thermally activated delayed fluorescence from an exciplex[J]. ACS Appl Mater Inter, 2019, 11(14): 13460-13471.
[39]Nguyen T B, Nakanotani H, Hatakeyama T, et al. The role of reverse intersystem crossing using a TADF-type acceptor molecule on the device stability of exciplex-based organic light-emitting diodes[J]. Adv Mater, 2020, 32(9): 1906614.
[40]Jeon S K, Lee J Y. Highly efficient exciplex organic light-emitting diodes by exciplex dispersion in the thermally activated delayed fluorescence host[J]. Org Electron, 2020, 76: 105477.
[41]Li J, Gong H, Zhang J, et al. Efficient exciplex-based deep-blue organic light-emitting diodes employing a bis (4-fluorophenyl) amine-substituted heptazine acceptor[J]. Molecules, 2021, 26(18): 5568.