期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Physical Science and Technical Research. 2025; 5: (2) ; 1-6 ; DOI: 10.12208/j.pstr.20250011.

Research progress on distributed optical fiber pipeline leakage monitoring technology
分布式光纤管道泄漏监测技术研究进展

作者: 李晓豪, 刘理 *, 曾伟, 龙俊波

九江学院电子信息工程学院 江西九江

*通讯作者: 刘理,单位:九江学院电子信息工程学院 江西九江;

发布时间: 2025-12-10 总浏览量: 59

摘要

地下与长输管道的安全运行对监测技术提出了更高要求,传统点式传感技术因覆盖范围有限难以满足连续监测需求。分布式光纤传感技术以光纤本身作为传感介质,可实现沿管线全长的温度、应变与振动等多参量连续分布式测量,为管道泄漏监测提供了理想解决方案。本文系统梳理了基于不同散射机理的分布式光纤传感技术(包括光时域反射仪(OTDR)、布里渊光时域反射仪(BOTDR)、布里渊光时域分析仪(BOTDA)、拉曼光时域反射仪(ROTDR))在管道泄漏监测中的研究进展,总结了各类技术的原理、性能指标与应用特点,并重点探讨了数据处理与模式识别方法在提升泄漏识别准确率与定位精度方面的关键作用。研究表明,随着人工智能算法的深度融合与多技术协同发展,分布式光纤管道泄漏监测技术正朝着更智能、可靠与标准化的方向演进,具有良好的工程应用前景。然而,如何有效抑制环境干扰、实现多参量数据融合以及保障系统长期稳定性,仍是未来研究需着力突破的关键挑战。

关键词: 分布式光纤传感;管道泄漏监测;深度学习;模式识别

Abstract

The safe operation of underground and long-distance pipelines imposes higher demands on monitoring technologies, as traditional point-sensing methods are limited in coverage and struggle to meet continuous monitoring requirements. Distributed optical fiber sensing technology, which utilizes optical fibers as the sensing medium, enables continuous distributed measurement of multiple parameters such as temperature, strain, and vibration along the entire pipeline length, providing an ideal solution for pipeline leakage detection. This paper systematically reviews the research progress of distributed optical fiber sensing technologies (including Optical Time Domain Reflectometer (OTDR), Brillouin Optical Time Domain Reflectometer (BOTDR), Brillouin Optical Time Domain Analysis (BOTDA), and Raman Optical Time Domain Reflectometer (ROTDR)) based on different scattering mechanisms in pipeline leakage monitoring. It summarizes the principles, performance metrics, and application characteristics of these technologies, with a focus on the critical role of data processing and pattern recognition methods in improving leakage identification accuracy and localization precision. The study demonstrates that with the deep integration of artificial intelligence algorithms and the coordinated development of multiple technologies, distributed optical fiber pipeline leakage monitoring is evolving toward a more intelligent, reliable, and standardized direction, holding promising prospects for engineering applications. However, how to effectively suppress environmental interference, achieve multi-parameter data fusion, and ensure the long-term stability of the system remain the key challenges that future research needs to focus on and break through.

Key words: Distributed optical fiber sensing; Pipeline leakage monitoring; Deep learning; Pattern recognition

参考文献 References

[1] Wen C, Hu S, Wang J, et al. Fiber optic sensing technology in underground pipeline health monitoring: a comprehensive review[J]. Structural Health Monitoring, 2024: 14759217241280904.

[2] Rayhana R, Xiao G, Liu Z. Fiber Optic Sensing Technologies for Underground Pipeline Monitoring[J]. IEEE Open Journal of Instrumentation and Measurement, 2025.

[3] Zhang J, Lian Z, Zhou Z, et al. Numerical and experimental study on leakage detection for buried gas pipelines based on distributed optical fiber acoustic wave[J]. Measurement Science and Technology, 2021, 32(12): 125209.

[4] Zhang S, Xiong Z, Ji B, et al. Water pipeline leakage detection based on coherent φ-OTDR and deep learning technology[J]. Applied Sciences, 2024, 14(9): 3814.

[5] Moubayed A, Sharif M, Luccini M, et al. Water leak detection survey: Challenges & research opportunities using data fusion & federated learning[J]. IEEE Access, 2021, 9: 40595-40611.

[6] Prisutova J, Krynkin A, Tait S, et al. Use of fibre-optic sensors for pipe condition and hydraulics measurements: A review[J]. CivilEng, 2022, 3(1): 85-113.

[7] Korlapati N V S, Khan F, Noor Q, et al. Review and analysis of pipeline leak detection methods[J]. Journal of pipeline science and engineering, 2022, 2(4): 100074.

[8] Venketeswaran A, Lalam N, Wuenschell J, et al. Recent advances in machine learning for fiber optic sensor applications[J]. Advanced Intelligent Systems, 2022, 4(1): 2100067.

[9] Rajasekaran U, Kothandaraman M. A survey and study of signal and data-driven approaches for pipeline leak detection and localization[J]. Journal of Pipeline Systems Engineering and Practice, 2024, 15(2): 03124001.

[10] Liu W, Zhou W, Li H, et al. Pipeline leakage localization using internally installed distributed fiber optic sensors[C]//Eighth Symposium on Novel Photoelectronic Detection Technology and Applications[J]. SPIE, 2022, 12169: 2201-2208.

[11] Lalam N, Westbrook P, Naeem K, et al. Pilot-scale testing of natural gas pipeline monitoring based on phase-OTDR and enhanced scatter optical fiber cable[J]. Scientific Reports, 2023, 13(1): 14037.

[12] Zhang S, Xiong Z, Ji B, et al. Water pipeline leakage detection based on coherent φ-OTDR and deep learning technology[J]. Applied Sciences, 2024, 14(9): 3814.

[13] Huang, Luyao, and Dezhi Zhang. "Turning Fiber into a Sensing System: The Magic of Fiber Optics Sensing." Global Communications 2025 (2025).

[14] Zheng X, Cui Y, Bai Q, et al. Security pre-warning system of underground pipelines based on BOTDR[C]//Optics frontiers online 2020: distributed optical fiber sensing technology and applications[J]. SPIE, 2021, 11607: 112-116.

[15] Alarifi H, Mohamad H. Estimation of the buried pipeline displacement using distributed fibre optic sensing: An experimental study[C]//IOP Conference Series[J]: Materials Science and Engineering. IOP Publishing, 2021, 1101(1): 012004.

[16] Shabaneh A A A, Daraghma R S M. Design a remote sensing of multi-BOTDR fiber optic sensors for fuel pipeline monitoring[J]. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2023, 21(1): 60-69.

[17] Lalam N, Bhatta H, Buric M, et al. Distributed optical fiber sensor systems: application to natural gas pipeline monitoring[C]//Optical Waveguide and Laser Sensors III[J]. SPIE, 2024, 13044: 97-102.

[18] Lalam N, Brister M M, Bhatta H, et al. Pilot-scale validation of distributed optical fiber sensors for underground pipeline monitoring[C]//Optical Waveguide and Laser Sensors IV[J]. SPIE, 2025, 13467: 14-21.

[19] Liu B, He J, Zhang L, et al. Pipeline safety monitoring technology based on FBG-ROTDR joint system and its case study of urban drainage pipeline monitoring[J]. Optical Fiber Technology, 2022, 73: 103044.

[20] Lou F, Wang B, Sima R, et al. The Optimization of a Pipeline Temperature Monitoring Method Based on Non-Local Means with the Black Widow Optimization Algorithm[J]. Energies, 2023, 16(20): 7178.

[21] Silva V F, Netto T A, Ribeiro B A. Deep Learning Approaches for Fault Detection in Subsea Oil and Gas Pipelines: A Focus on Leak Detection Using Visual Data[J]. Journal of Marine Science and Engineering, 2025, 13(9): 1683.

[22] Ullah N, Ahmed Z, Kim J M. Pipeline leakage detection using acoustic emission and machine learning algorithms[J]. Sensors, 2023, 23(6): 3226.

[23] Barros D B, Pereira T C, Meirelles G, et al. Signal processing and pattern recognition for leak detection in a water distribution network[J]. Journal of Water Resources Planning and Management, 2024, 150(9): 04024034.

[24] Saleem F, Ahmad Z, Kim J M. Real-Time pipeline leak detection: A hybrid deep learning approach using acoustic emission signals[J]. Applied Sciences, 2024, 15(1): 185.

[25] Ali A, Xinhua W, Razzaq I. Pipeline leak detection through implementation of empirical mode decomposition and cluster analysis[J]. Measurement, 2025, 248: 116873.

引用本文

李晓豪, 刘理, 曾伟, 龙俊波, 分布式光纤管道泄漏监测技术研究进展[J]. 物理科学与技术研究, 2025; 5: (2) : 1-6.