摘要
暗物质作为宇宙中最重要却尚未被直接探测到的成分之一,占据了宇宙物质总量的绝大部分,其存在已通过引力效应得到间接证实。然而,暗物质的微观性质、粒子类型以及相互作用机制仍是当今基础物理与宇宙学研究中最为关键的未解之谜。近年来,随着实验物理、量子精密测量、材料科学及深空探测技术的不断发展,暗物质探测技术取得了显著进展。一方面,基于液氙、液氩和高纯锗等材料的低温探测器在灵敏度和背景抑制方面取得突破,为轻质量暗物质和弱相互作用大质量粒子(WIMPs)的搜索提供了新的实验依据。另一方面,量子精密测量、原子干涉仪和新型磁力仪的应用使得对超轻标量暗物质、轴子类暗物质的探测成为可能,为探索更广泛的参数空间提供了新的途径。同时,间接探测技术通过观测高能宇宙线、伽马射线和中微子等信号不断拓展对暗物质分布及湮灭机制的认识,而对撞机实验则在极端高能条件下探索暗物质候选粒子的产生机制,形成了多渠道互补的研究格局。本文在系统梳理暗物质探测技术最新进展的基础上,分析其面临的实验挑战与理论困境,并展望未来可能的研究方向。预计随着量子信息技术的引入、超大规模低背景实验的开展以及太空实验平台的应用,暗物质探测将迎来新一轮跨越式发展。这不仅有助于揭示宇宙的基本构成和演化规律,也将推动多学科技术的融合与应用,为基础科学与前沿工程带来深远影响。
关键词: 暗物质;直接探测;间接探测;量子精密测量;未来方向
Abstract
Dark matter, as one of the most important but not yet directly detected components in the universe, accounts for the vast majority of the total amount of matter in the universe, and its existence has been indirectly confirmed by gravitational effects. However, the microscopic properties, particle types, and interaction mechanisms of dark matter remain the most critical unsolved mysteries in fundamental physics and cosmology today. In recent years, with the continuous development of experimental physics, quantum precision measurement, materials science and deep space exploration technology, significant progress has been made in dark matter detection technology. On the one hand, cryogenic detectors based on liquid xenon, liquid argon and high purity germanium have made breakthroughs in sensitivity and background suppression, providing new experimental basis for the search of light dark matter and weakly interacting massive particles (WIMPs). On the other hand, the application of quantum precision measurement, atomic interferometer and new magnetometer makes it possible to detect ultra-light scalar dark matter and axial dark matter, which provides a new way to explore a wider parameter space. At the same time, indirect detection technology continuously expands the understanding of dark matter distribution and annihilation mechanism by observing high-energy cosmic rays, gamma rays and neutrinos, while collider experiment explores the generation mechanism of dark matter candidate particles under extremely high energy conditions, forming a multi-channel complementary research pattern. Based on a systematic review of the latest advances in dark matter detection techniques, this paper analyzes the experimental challenges and theoretical dilemmas faced by dark matter detection techniques, and looks forward to possible research directions in the future. It is expected that with the introduction of quantum information technology, the development of ultra-large-scale low-background experiments and the application of space experimental platforms, dark matter detection will usher in a new round of leapfrog development. This will not only help to reveal the basic composition and evolution of the universe, but also promote the integration and application of multidisciplinary technologies, bringing far-reaching influence to basic science and cutting-edge engineering.
Key words: Dark matter; Direct detection; Indirect detection; Quantum precision measurement; Future direction
参考文献 References
[1] 王敏.科学家利用量子精密测量技术创造暗物质探测纪录[N].中国科学报,2024-11-15(001).
[2] 许武龙.自相互作用暗物质及其相关研究[D].北京工业大学,2024.
[3] 郭学康.基于中微子观测的超重暗物质搜寻与研究[D].广西大学,2024.
[4] 吕宜霏.基于邻近星系的中微子观测的暗物质搜寻研究[D].广西大学,2024.
[5] 李军.基于LHAASO数据的暗物质信号搜寻[D].中国科学技术大学,2024.
[6] 云在.通过极化核子探测暗物质的非弹性特征[D].烟台大学,2024.
[7] 杨颖慧.基于量子精密磁测量的暗物质搜寻技术[D].中国科学技术大学,2024.
[8] 苏昊文.基于自旋量子放大器的暗物质实验研究[D].中国科学技术大学,2023.
[9] 赵一心,刘曦屿,于东睿,等. 原子磁力仪在异常作用力及类轴子暗物质探测中的应用[J].计测技术,2023,43(04):1-14.
[10] 江通.引力波波源定位、暗物质环境探测及Brans-Dicke理论检验的研究[D].华中科技大学,2023.
[11] 赵凌波.交变强磁场中的轴子暗物质电磁响应研究[D].东华大学,2023.
[12] 敬雅冉.用于下一代暗物质粒子探测卫星中塑闪阵列探测器的前端读出ASIC关键技术研究[D].中国科学院大学(中国科学院近代物理研究所),2022.
[13] 赵伟.基于原子干涉仪的超轻标量和矢量暗物质探测方案研究[D].中国科学院大学(中国科学院精密测量科学与技术创新研究院),2022.
[14] 李任明杰.高纯锗暗物质实验中超快体事例本底的研究与甄别[D].四川大学,2022.
[15] 苏亮亮.轻暗物质的直接探测[D].南京师范大学,2022.
[16] 黄沛尧.PandaX-30T暗物质探测器用超高纯氪氙低温精馏系统设计与优化分析[D].上海交通大学,2022.
[17] 戴皓珽.暗物质粒子探测卫星实验上利用地磁效应测量空间正负电子能谱[D].中国科学技术大学,2022.
[18] Razeto A ,Rossi N . Challenges for dark matter direct search with SiPMs[J].Frontiers in Physics,2024,11
[19] Yu L ,钰 刘 ,Lei Z , et al. Cryogenic phonon-detector model with solid argon for detecting dark matter[J].Chinese Physics C,2023,47(12):
[20] Singh M R ,Dongming M ,Sanjay B , et al. Development of Low-Threshold Detectors for Low-Mass Dark Matter Searches with a p-Type Germanium Detector Operated at Cryogenic Temperature[J].Journal of Low Temperature Physics,2023,212(3-4):138-152.
[21] Hyelim K ,Hamb Y K ,Rae K W . Cryogenic particle detection based on magnetic microcalorimeters for rare event searches[J].The European Physical Journal Plus,2023,138(6):
[22] Holland E S . Fully depleted charge‐coupled device design and technology development[J].Astronomische Nachrichten,2023,344(8-9):
[23] E. M T ,A. C T ,M. W C , et al. Comparing Instrument Spectral Sensitivity of Dissimilar Electromagnetic Haloscopes to Axion Dark Matter and High Frequency Gravitational Waves[J].Symmetry,2022,14(10):2165-2165.
[24] Marco G . Particle detection in rare gas solid crystals: a feasibility experimental study—exploring new ways for dark matter searches[J].The European Physical Journal Plus,2022,137(6):
[25] Yonatan K ,Tongyan L . Searches for light dark matter using condensed matter systems.[J].Reports on progress in physics. Physical Society (Great Britain),2022,85(6):