摘要
本文通过一个门式框架的参数共振试验,发现了涉及两种振动模态参与的新的参数共振现象。当框架的平面内频率近似等于扭转频率,并且外部周期性激励参数位于结构参数共振的不稳定区域内时,结构系统将发生新奇的双模态参数共振。在不稳定域内观察到四种不同的参数共振现象,第一种现象是单模态扭转参数共振,其特征为大振幅的扭转共振和较小的不规则平面内振动;第二、三种现象是双模态参与的同相位和异相位参数共振,其中大振幅平面内和扭转模式运动分别表现出同步和异步行为,这两种模式运动之间存在显著的耦合和能量传递;第四种现象是双模态非耦合参数共振,其特征是振幅相对较小,双模运动之间没有相互作用或能量交换,平面内振动表现出间歇性的参数共振,而扭转模态参数共振保持相对稳定的极限环振荡。本文进一步讨论了不稳定区域内不同位置的结构参数共振的特征。复杂的双模态参数共振对实际工程结构可能构成潜在的危害,本文的试验发现可为复杂非线性参数共振的潜在技术应用提供参考。
关键词: 双模态;参数共振;试验;门式框架;耦合/非耦合
Abstract
This paper discovers new parametric resonance phenomena involving two vibration modes through a parametric resonance test of a portal frame. When the in-plane frequency of the frame is approximately equal to the torsional frequency, and the external periodic excitation falls within the instability region of structural parametric resonance, special two-mode parametric resonances occur in the structural system. Four distinct parametric resonance phenomena are observed within the instability domain. The first type is the one-mode torsional instability, characterized by a predominant large-amplitude torsional resonance with minor irregular in-plane vibrations. The second and third types are the two-mode in-phase and out-of-phase instabilities, where the large-amplitude in-plane and torsional mode motions exhibit synchronous and asynchronous behavior, respectively. There are significant coupling and energy transfer between these two mode motions. The fourth type is the two-mode uncoupled parametric resonance, characterized by relatively smaller vibration amplitude and no interaction or energy exchange between the two mode motions. The in-plane mode motion demonstrates intermittent parametric resonance, whereas the torsional-mode parametric resonance maintains a relatively stable limit-cycle oscillation. The characteristics of parametric resonance at different locations within the instability region are also addressed. The complex two-mode dynamic instabilities pose potential hazards to practical engineering structures. The present study can serve as a valuable reference for potential applications of complex nonlinear parameter resonances.
Key words: Two-mode; Parametric resonance; Experiment; Portal frame; Coupling/Uncoupling
参考文献 References
[1] Bolotin V.V. The dynamic stability of elastic systems [M]. San Francisco: Holden Day,1964.
[2] Nayfeh A.H, Mook D.T. Nonlinear oscillations [M]. John Wiley & Sons, 2008.
[3] Li Y., Gou H, Zhang L, Chang C. Auto-parametric resonance of framed structures under periodic excitations Struct [J]. J. Eng. Mech, 2017, 61(4):497-510.
[4] Liu W, Guan Z, Zhang S, Li Y. Numerical and experimental investigation on auto-parametric resonance of multi-system structures [J]. Int. J. Mech. Sci, 2023, 259:108591.
[5] Dwivedy S. K, Kar R. C. Dynamics of a slender beam with an attached mass under combination parametric and internal resonances. Part I: steady state response [J]. J. Sound Vib, 1999, 221(5): 823-848.
[6] Dwivedy S. K, Kar R. C. Dynamics of a slender beam with an attached mass under combination parametric and internal resonances. Part II: periodic and chaotic responses [J]. J. Sound Vib, 1999, 222(2): 281-305.
[7] Dwivedy S. K, Kar R. C. Non-linear dynamics of a slender beam carrying a lumped mass under principal parametric resonance with three-mode interactions [J]. Int. J. Non-Linear Mech, 2001, 36: 927-945.
[8] Dwivedy S. K, Kar R. C. Simultaneous combination, principal parametric and internal resonances in a slender beam with a lumped mass: three-mode interaction [J] J. Sound. Vib, 2001, 242(1): 27-46.
[9] Jin Q., Yuan F. G, Ren Y. Auto-parametric resonance of flexible viscoelastic beams under interaction between longitudinal and transverse modes Chaos [J]. Solitons and Fractals, 2023,174: 11388.
[10] Li Y., Liu W., Shen C., Yang X. Experimental and Numerical Analyses for Auto-Parametric Internal Resonance of a Framed Structure [J]. International Journal of Structural Stability and Dynamics, 2021,21(1):2150012(18 Pages)
[11] Li Y., Shen C., Que Z. Vector form intrinsic finite element analysis for nonlinear parametric resonances of planar beam structures [J]. J. Sound. Vib, 2024, 584:118438.