参考文献 References
[1] Miao J S, Wang C. Avalanche photodetectors based on two-dimensional layered materials[J]. Nano Research, 2020, 14(6): 1878-1888.
[2] 叶振华,李辉豪,王进东,等. 红外光电探测器的前沿热点与变革趋势[J]. 红外与毫米波学报, 2022, 41(1): 15-39.
[3] 程碑彤,代千,谢修敏,等. 单光子探测器的研究进展[J]. 激光技术, 2022, 46(5): 601-609.
[4] Wang H Y, Li Z X, Li D Y, et al. Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors[J]. Advanced Functional Materials, 2021, 31(30): 2103106.
[5] 张恒康,冀婷,李国辉,等. 二维材料光电探测器的研究进展[J]. 半导体技术, 2020, 45(1): 43-51.
[6] Azar N S, Bullock J, Shrestha V R, et al. Long-wave infrared photodetectors based on 2D platinum diselenide atop optical cavity substrates[J]. ACS Nano, 2021, 15(4): 6573-6581.
[7] Liu X F, Guo Q B, Qiu J R. Emerging Low-Dimensional Materials for Nonlinear Optics and Ultrafast Photonics[J]. 2017, 29(14): 354-362.
[8] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[9] Yuan L, Yu H, Xiang F D. Van der Waals integration before and beyond two-dimensional materials[J]. Nature, 2019, 567(7748): 323-333.
[10] 贾欣宇,兰长勇,李春. 二维材料在红外探测器中的应用最新进展(特邀)[J]. 红外与激光工程, 2022, 51(7): 69-84
[11] Zhang Y Z, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature communications, 2013, 4(1): 1811.
[12] Kappera R, Voiry D, Yalcin S E, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors[J]. Nature Materials, 2014, 13 (12): 1128-1134.
[13] Guo Q S, Pospischil A, Bhuiyan M, et al. Black Phosphorus Mid-Infrared Photodetectors with High Gain[J]. Nano Letters, 2016, 16(7): 4648-4655.
[14] Gao L F, Zhao Y M, Chang X H. et al. Emerging applications of MXenes for photodetection: Recent advances and future challenges[J]. Materials Today, 2022, 61: 169-190.
[15] Huang X Y, Zhuo Z W, Yan L, et al. Single-Layer Zirconium Dihalides ZrX2(X = Cl, Br, and I) with Abnormal Ferroelastic Behavior and Strong Anisotropic Light Absorption Ability[J]. Journal of Physical Chemistry Letters, 2021, 12(32): 7726-7732.
[16] Zhou Y, Cheng B T, Huang S, et al. The Tunable Electronic and Optical Properties of Two-Dimensional Bismuth Oxyhalides[J]. Nanomaterials (Basel, Switzerland), 2023, 13(20): 2798.
[17] 杨珏晗,魏钟鸣,牛智川. 基于二维材料异质结的光探测器研究进展[J]. 人工晶体学报, 2020, 49(3): 379-397.
[18] 张兴超, 潘锐,韩嘉悦,等. 拓扑量子材料光电探测器研究进展[J]. 中国光学, 2021, 14(01): 43-65.
[19] Cai Y Q, Zhang G, Zhang Y W. Electronic properties of phosphorene/graphene and Phosphorene/Hexagonal boron nitride heterostructures[J]. The Journal of Physical Chemistry C, 2015, 119(24): 13929-13936.
[20] Le N B, Huan T D, Woods L M. Interlayer interactions in van der Waals heterostructures: electron and phonon properties[J]. ACS applied materials & interfaces, 2016, 8(9): 6286-6292.
[21] Zhao X M, Bo M L, Huang Z K, et al. Heterojunction bond relaxation and electronic reconfiguration of WS2-and MoS2-based 2D materials using BOLS and DFT[J]. Applied Surface Science, 2018, 462(1): 508-516.
[22] Behera S K, Deb P. Controlling the bandgap in graphene/h-BN heterostructures to realize electron mobility for high performing FETs[J]. RSC advances, 2017, 7(50): 31393-31400.
[23] Wang Y S, Song N H, Yang X H, et al. Tailoring the electronic properties of graphyne/blue phosphorene heterostructure via external electric field and vertical strain [J]. Chemical Physics Letters, 2019, 730: 277-282.
[24] Lu N, Guo H Y, Li L, et al. MoS2/MX2 heterobilayers: Bandgap engineering via tensile strain or external electrical field[J]. Nanoscale, 2014, 6(5): 2879-2886.
[25] Wang S K, Tian H Y, Ren C D, et al. Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide[J]. Scientific reports, 2018, 8(1): 12009.
[26] Ren K, Sun M L, Luo Y, et al. First-principle study of electronic and optical properties of two-dimensional materials-based heterostructures based on transition metal dichalcogenides and boron phosphide[J]. Applied Surface Science, 2019, 476: 70-75.
[27] Fang L, Liu R L, Tong X Y. Strain-induced electronic properties of van der Waals heterostructures based on tin dichalcogenides[J]. AIP ADVANCES, 2019, 9(5): 055324.
[28] Huang L, Li J B. Tunable electronic structure of black phosphorus/blue phosphorus van der Waals pn heterostructure[J]. Applied Physics Letters, 2016, 108(8): 083101.
[29] Tang K W, Qi W H, Li Y J, et al. Electronic Properties of van der Waals Heterostructure of Black Phosphorus and MoS2[J]. The Journal of Physical Chemistry C, 2018, 122(12): 7027-7032.
[30] Yang F, Han J, Zhang L, et al. Adjustable electronic and optical properties of BlueP/MoS2 van der Waals heterostructure by external strain: a first-principles study[J]. Nanotechnology, 2020, 31(37): 375706.
[31] Huang X Y, Cao Q L, Wan M J, et al. Electronic and Optical Properties of BP, InSe Monolayer and BP/InSe Heterojunction with Promising Photoelectronic Performance [J]. Materials, 2022, 15(18): 6214.
[32] 郭瑞, 魏星, 曹末云, 等. AlAs/InSe范德华异质结构的光学和可调谐电子特性[J]. 化学学报, 2022, 80 (4): 526-534.
[33] Zhang W J, Chuu C P, Huang J K, et al. Ultrahigh-Gain Phototransistors Based on Graphene-MoS2 Heterostructures [J]. Advanced Materials, 2013, 25(25): 3456-3461.
[34] Deng Y X, Luo Z, Conrad N J, et al. Black Phosphorus-Monolayer MoS2 van der Waals Heterojunction P-N Diode[J]. ACS Nano, 2014, 8(8): 8292-8299.
[35] Ye L, Li H, Chen Z, et al. Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction[J]. Acs Photonics, 2016, 3(4): 692-699.
[36] Bullock J, Amani M, Cho J, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature [J]. Nature Photonics, 2018, 12(10): 601-607.
[37] Gao A Y, Lai J W, Wang Y J, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures[J]. Nature Nanotechnology, 2019, 14: 217-222.
[38] Chen Y F, Tan C W, Wang Z, et al. Momentum-matching and band-alignment van der Waals heterostructures for high-efficiency infrared photodetection[J]. Science advances, 2022, 8(30): eabq1781.
[39] Chen P, Pi L J, Li Z X, et al. GeSe/MoTe2 vdW heterostructure for UV–VIS–NIR photodetector with fast response[J]. Applied Physics Letters, 2022, 121(2): 021103.
[40] Li H Y, Zhang T, Yi Z X, et al. High Sensitive and Stable UV- Vis Photodetector Based on MoS2 / MoO3 vdW Heterojunction [J]. ACS applied materials & interfaces, 2024, 16(26): 33829-33837.
[41] Vabbina P, Choudhary N, Chowdhury A A, et al. Highly Sensitive Wide Bandwidth Photodetector Based on Internal Photoemission in CVD Grown p-Type MoS2/Graphene Schottky Junction(Article)[J]. ACS Applied Materials and Interfaces, 2015, 7(28): 15206-15213.
[42] Iqbal M Z, Khan S, Siddique S. Ultraviolet-light-driven photoresponse of chemical vapor deposition grown molybdenum disulfide/graphene heterostructured FET [J]. Applied Surface Science, 2018, 459(1): 853-859.
[43] Rathi S, Lee I, Lim D, et al. Tunable electrical and optical characteristics in monolayer graphene and few-layer MoS2 heterostructure devices[J]. Nano Letters, 2015, 15(8): 5017-5024.
[44] Lee I, Kang W T, Kim J E, et al. Photoinduced tuning of schottky barrier height in graphene/MoS2 heterojunction for ultrahigh performance short channel phototransistor[J]. ACS Nano, 2020, 14(6): 7574-7580.
[45] Liu Y, Shivananju B N, Wang Y S, et al. Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene-Black Phosphorus Heterostructure[J]. ACS Appl Mater Interfaces, 2017, 9(41): 36137-36145.
[46] Ye L, Wang P, Luo W J, et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure[J]. Nano Energy, 2017, 37: 53-60.
[47] Long M S, Gao A Y, Wang P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus[J]. Science advances, 2017, 3(6): e1700589.
[48] Wang B, Yuan J, Che M Q, et al. High-performance broadband photodetector based on PtSe2/MoS2 heterojunction from visible to near-infrared region [J]. Science China(Information Sciences), 2024, 67(3): 263-270.
[49] Lukman S, Ding L, Xu L, et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection[J]. Nature nanotechnology, 2021, 16(3): 354.
[50] Li K L, Du C H, Gao H L, et al. Ultrafast and Polarization-Sensitive ReS2/ReSe2 Heterostructure Photodetectors with Ambipolar Photoresponse[J]. ACS applied materials & interfaces, 2022, 14(29): 33589-33597.
[51] Lin Z T, Zhu W B, Zeng Y H, et al. Enhanced Photodetection Range from Visible to Shortwave Infrared Light by ReSe2/MoTe2 van der Waals Heterostructure[J]. Nanomaterials, 2022, 12(15): 2664.
[52] Jaffery S H A, Riaz M, Abbas Z, et al. Strong interlayer transition in a staggered gap GeSe/MoTe2 heterojunction diode for highly efficient visible and near‐infrared photodetection and logic inverter[J]. EcoMat. 2023, 5(3): e12307.
[53] Afzal A M, Iqbal M Z, Dastgeer G, et al. Ultrafast and Highly Stable Photodetectors Based on p-GeSe/n-ReSe2 Heterostructures[J]. ACS applied materials & interfaces, 2021, 13(40): 47882-47894.
[54] Hussain M, Jaffery S H A, Ali A, et al. NIR self-powered photodetection and gate tunable rectification behavior in 2D GeSe/MoSe2 heterojunction diode[J]. Scientific reports, 2021, 11(1): 3688.
[55] Du C H, Gao H L, Du W T, et al. High responsivity and broadband polarized photodetectors based on InSe/ReSe2 van der Waals heterostructures[J]. Journal of Alloys and Compounds, 2022, 919: 165586.
[56] Wang C, Ye J X, An Y K. Tailoring the band alignment and magnetic and optical properties of g-C3N4/WSe2 van der Waals heterostructures by vacancies and atomic doping[J]. Modern Physics Letters B, 2021, 35(34): 1-16.
[57] Fu S, Wang D, Ma Z, et al. The first-principles study on the halogen-doped graphene/MoS2 heterojunction[J]. Solid State Communications, 2021, 334-335: 114366.
[58] Lv X R, Liu G P, Mao B Y, et al. α-In2Se3/Nb-doped MoSh2 heterojunction: a first-principles study[J]. Semiconductor Science and Technology, 2024, 39(1): 015001.
[59] Yu Y L, Shen T, Long H R, et al. Doping Engineering in the MoS2/SnSe2 Heterostructure toward High-Rejection-Ratio Solar-Blind UV Photodetection[J]. Advanced Materials, 2022, 34(43): 2206486.
[60] Zhan Y X, Wu Z T, Zeng P Y, et al. High-Performance Self-Powered WSe2/ReS2 Photodetector Enabled via Surface Charge Transfer Doping[J]. ACS applied materials & interfaces, 2023, 15(47): 55043-55054.
[61] Lin G Y, Qian J H, Ding H K, et al. Harvesting strong photoluminescence of physical vapor deposited GeSn with record high deposition temperature[J]. Journal of Physics D: Applied Physics, 2023, 56(35): 355104.
[62] 刘标. 二维半导体与金属异质结界面肖特基势垒调控的第一性原理研究[D]. 湖南大学, 2017.
[63] Huang L, Huo N J, Li Y, et al. Electric-field tunable band offsets in black phosphorus and MoS2 van der Waals pn heterostructure[J]. The journal of physical chemistry letters, 2015, 6(13): 2483-2488.
[64] Liao C W, Zhao Y P, Ouyang G. Strain-modulated band engineering in two-dimensional black phosphorus/MoS2 van der Waals heterojunction[J]. ACS omega, 2018, 3(11): 14641-14649.
[65] 谭淼,张磊,梁万珍. 基于二维材料WX2构建的范德华异质结的结构和性质及应变效应的理论研究[J]. 物理化学学报, 2019, 35 (4): 385-393.
[66] 展晓飞,邓增龙,聂锦兰,等. 石墨相氮化碳/蓝磷异质结的光催化性能研究[J]. 实验科学与技术, 2021, 19(3): 28-34.
[67] Liu B Y, Chen Y F, You C Y, et al. High performance photodetector based on graphene/MoS2/graphene lateral heterostructure with Schottky junctions[J]. Journal of Alloys and Compounds, 2019, 779: 140-146.
[68] Kim D Y, Hashmi A, Hwang C Y, et al. Thickness dependent band gap and effective mass of BN/graphene/BN and graphene/BN/graphene heterostructures[J]. Surface science, 2013, 610: 27-32.
[69] Farooq M U, Hashmi A, Hong J. Thickness dependent optical properties of multilayer BN/graphene/BN[J]. Surface Science, 2015, 634: 25-30.
[70] Datta K, Khosru Q D M. Electronic properties of MoS2/MX2/MoS2 trilayer heterostructures: a first principle study[J]. ECS Journal of Solid State Science and Technology, 2016, 5(11): Q3001.
[71] Datta K, Shadman A, Rahman E, et al. Trilayer TMDC Heterostructures for MOSFETs and Nanobiosensors[J]. Journal of Electronic Materials,.2017, 46(2): 1248–1260.
[72] Xu L, Huang W Q, Hu W Y, et al. Two-dimensional MoS2-graphene-based multilayer van der Waals heterostructures: Enhanced charge transfer and optical absorption, and electric-field tunable Dirac point and band gap[J]. Chemistry of Materials, 2017, 29(13): 5504–5512.
[73] Xia C X, Du J, Fang L Z, et al. PtSe2/graphene hetero-multilayer: Gate-tunable Schottky barrier height and contact type[J]. Nanotechnology, 2018, 29(46): 465707.
[74] Bafekry A, Yagmurcukardes M, Akgenc B, et al. Van der Waals heterostructures of MoS2 and Janus MoSSe monolayers on graphitic boron-carbon-nitride (BC3, C3N, C3N4 and C4N3) nanosheets: A first-principles study[J]. Journal of Physics D: Applied Physics, 2020, 53(35): 355106.
[75] Han J, Yang F, Xu L, et al. Modulated electronic and optical properties of bilayer/trilayer Blue Phosphorene/MoX2 (X= S, Se) van der Waals heterostructures[J]. Surfaces and Interfaces, 2021, 25, 101228.
[76] Liu S, Li X, Meng D, et al. Tunable electronic properties of MoS2/SiC heterostructures: A First-Principles study[J]. Journal of Electronic Materials, 2022, 51(7): 3714-3726.
[77] Cheng B T, Zhou Y, Jiang R M, et al. Structural, Electronic and Optical Properties of Trilayer Van der Waals Heterostructure[J]. Nanomaterials, 2023, 13(9): 1574.
[78] Cheng B T, Zhou Y, Jiang R M, et al. Graphene-Sandwiched Van der Waals Heterostructures for Photodetectors[C]// 2023 Photonics & Electromagnetics Research Symposium (PIERS), 2023, 656-663.
[79] Long M S, Liu E F, Wang P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4): 2254-2259.
[80] Yuan S F, Shen C F, Deng B C, et al. Air-Stable Room-Temperature Mid-Infrared Photodetectors Based on h-BN/Black Arsenic Phosphorus/h-BN Heterostructures[J]. Nano Letters, 2018, 18(5): 3172-3179.
[81] Jiang M H, Zheng T, Zhang J L, et al. Gate-Modulated Polarity Transition and Polarization-Sensitive Photodetection Enabled by Sandwiching Anisotropic GeSe in vdW Heterojunction[J]. Advanced Optical Materials, 2024, 12(16): 2303217.
[82] Pan Y T, Zhu L Q, Lu L D, et al. Polarized Photodetectors Based on 2D 2H-MoTe2/1T'-MoTe2/MoSe2 Van Der Waals Heterojunction[J]. Advanced Functional Materials, 2024, 2407931. (in press)
[83] Yao J D, Zheng Z Q, Yang G W. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm[J]. Journal of Materials Chemistry C, 2016, 4(33): 7831-7840.
[84] Kim J S, Park S J, Jang H, et al. Highly sensitive, gate-tunable, room-temperature mid-infrared photodetection based on graphene–Bi2Se3 heterostructure[J]. ACS Photonics, 2017, 4(3): 482-488.
[85] Yang C W, Tang H L, Sattar S, et al. Epitaxial Growth and Determination of Band Alignment of Bi2Te3–WSe2 Vertical van der Waals Heterojunctions[J]. ACS Materials Letters, 2020, 2(10): 1351-1359.
[86] Bafekry A, Obeid M M, Nguyen, C. D, et al. Graphene hetero-multilayer on layered platinum mineral jacutingaite (Pt2HgSe3): van der Waals heterostructures with novel optoelectronic and thermoelectric performances[J]. Journal of Materials Chemistry A, 2020, 8(26): 13248-13260.
[87] Kiemle J, Powalla L, Polyudov K, et al. Gate-Tunable Helical Currents in Commensurate Topological Insulator/Graphene Heterostructures[J]. ACS nano, 2022, 16(8): 12338-12344.
[88] Huang Z H, Jiang Y D, Han Q, et al. High responsivity and fast UV-Vis-SWIR photodetector based on Cd3As2/MoS2 heterojunction[J]. Nanotechnology, 2019, 31(6): 064001-061010.
[89] Li C Q, Zhao Y F, Vera A, et al. Proximity-induced superconductivity in epitaxial topological insulator/ graphene/gallium heterostructures[J]. Nature materials, 2023, 22(5): 570-575.
[90] Thingstad E, Hutchinson J, Loss D, et al. Topological Interlayer Superconductivity in a van der Waals Heterostructure[J]. arXiv preprint arXiv: 2405.07927, 2024.
[91] Liu H W, Zhu X L , Sun X X, et al. Self-Powered Broadband Photodetectors Based on Vertically Stacked WSe2/Bi2Te3 p-n Heterojunctions[J]. ACS Nano, 2019, 13(11): 13573-13580.
[92] Zhang H B, Song Z L, Li D, et al. Near-infrared Photodetection Based on Topological Insulator P-N Heterojunction of SnTe/Bi2Se3[J]. Applied Surface Science, 2020, 509: 145290.