期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Physical Sience and Technical Research. 2024; 4: (2) ; 1-13 ; DOI: 10.12208/j.pstr.20240007.

Research progress of photodetectors based on two-dimensional material van der Waals heterojunctions
二维材料范德华异质结光电探测器研究进展

作者: 赵语嫣1, 程碑彤1, 黄帅1, 蒋若梅1, 胡卫英1, 张伟1, 宋海智1,2,3 *

1西南技术物理研究所量子研究中心和激光雷达与器件技术重点实验室 四川成都
2 天府绛溪实验室微波与光子集成前沿研究中心 四川成都
3 长春理工大学高功率半导体激光国家重点实验室 吉林长春

*通讯作者: 宋海智,单位:西南技术物理研究所量子研究中心和激光雷达与器件技术重点实验室 四川成都 天府绛溪实验室微波与光子集成前沿研究中心 四川成都 长春理工大学高功率半导体激光国家重点实验室 吉林长春;

发布时间: 2024-12-22 总浏览量: 342

摘要

二维(two-dimensional, 2D)材料因其新颖的物理特性,已广泛用于光电探测器的研制。由于2D材料可以不受晶格匹配限制地在不同材料间以范德华(van der Waals, vdW)力结合而有效调节2D材料的性能,用于光电探测器的vdW异质结近年来也得到了广泛深入的研究,并在探测器性能上获得了很大提升。为了全面了解2D材料vdW异质结在光电探测器发展中的作用,本文综述了双层2D材料vdW异质结光电探测器的研究现状,总结了不同手段调控下的2D材料vdW异质结光电探测器的发展成果,描述了构建三层2D材料vdW异质结并应用于光电探测器性能提升方面的努力,报告了拓扑量子材料与2D材料的vdW异质结对光电探测器件发展的贡献,最后展望了2D材料vdW异质结光电探测器的未来发展趋势。期待本文工作为新一代2D材料光电器件的未来发展提供参考。

关键词: 二维材料;光电探测器;范德华异质结;光电性能

Abstract

With their high novelty, two-dimensional (2D) materials have been widely applied in the creation of photodetectors. In recent years, since different 2D materials can be combined together by van der Waals (vdW) force without requiring the lattice matching to effectively tune materials’ characteristics, 2D-material vdW heterojunction based photodetectors were widely and deeply investigated and were remarkably improved in the optoelectronic performance. In order to thoroughly learn the roles of 2D-material vdW heterojunctions in constructing highly sophisticated photodetectors, we herewith review the research status of two-layer vdW heterojunction photodetectors, summarize the achievements in modulating the two-layer vdW heterojunction photodetectors by various approaches, describe the efforts in constructing three-layer vdW heterojunctions and further improving the photodetectors’ performance, report the contributions of vdW heterojunctions composed of 2D and topological materials to the advances of photodetectors, and finally prospect the future trend in developing 2D-material vdW heterojunction photodetectors. We expect that this work serves as a reference for advancing next-generation optoelectronic devices based on 2D materials.

Key words: Two-dimensional materials; Photodetector; Van der Waals heterojunctions; Optoelectronic characteristics

参考文献 References

[1] Miao J S, Wang C. Avalanche photodetectors based on two-dimensional layered materials[J]. Nano Research, 2020, 14(6): 1878-1888.

[2] 叶振华,李辉豪,王进东,等. 红外光电探测器的前沿热点与变革趋势[J]. 红外与毫米波学报, 2022, 41(1): 15-39.

[3] 程碑彤,代千,谢修敏,等. 单光子探测器的研究进展[J]. 激光技术, 2022, 46(5): 601-609.

[4] Wang H Y, Li Z X, Li D Y, et al. Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors[J]. Advanced Functional Materials, 2021, 31(30): 2103106.

[5] 张恒康,冀婷,李国辉,等. 二维材料光电探测器的研究进展[J]. 半导体技术, 2020, 45(1): 43-51.

[6] Azar N S, Bullock J, Shrestha V R, et al. Long-wave infrared photodetectors based on 2D platinum diselenide atop optical cavity substrates[J]. ACS Nano, 2021, 15(4): 6573-6581. 

[7] Liu X F, Guo Q B, Qiu J R. Emerging Low-Dimensional Materials for Nonlinear Optics and Ultrafast Photonics[J]. 2017, 29(14): 354-362.

[8] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. 

[9] Yuan L, Yu H, Xiang F D. Van der Waals integration before and beyond two-dimensional materials[J]. Nature, 2019, 567(7748): 323-333.

[10] 贾欣宇,兰长勇,李春. 二维材料在红外探测器中的应用最新进展(特邀)[J]. 红外与激光工程, 2022, 51(7): 69-84  

[11] Zhang Y Z, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature communications, 2013, 4(1): 1811.

[12] Kappera R, Voiry D, Yalcin S E, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors[J]. Nature Materials, 2014, 13 (12): 1128-1134. 

[13] Guo Q S, Pospischil A, Bhuiyan M, et al. Black Phosphorus Mid-Infrared Photodetectors with High Gain[J]. Nano Letters, 2016, 16(7): 4648-4655. 

[14] Gao L F, Zhao Y M, Chang X H. et al. Emerging applications of MXenes for photodetection: Recent advances and future challenges[J]. Materials Today, 2022, 61: 169-190. 

[15] Huang X Y, Zhuo Z W, Yan L, et al. Single-Layer Zirconium Dihalides ZrX2(X = Cl, Br, and I) with Abnormal Ferroelastic Behavior and Strong Anisotropic Light Absorption Ability[J]. Journal of Physical Chemistry Letters, 2021, 12(32): 7726-7732.

[16] Zhou Y, Cheng B T, Huang S, et al. The Tunable Electronic and Optical Properties of Two-Dimensional Bismuth Oxyhalides[J]. Nanomaterials (Basel, Switzerland), 2023, 13(20): 2798. 

[17] 杨珏晗,魏钟鸣,牛智川. 基于二维材料异质结的光探测器研究进展[J]. 人工晶体学报, 2020, 49(3): 379-397.

[18] 张兴超, 潘锐,韩嘉悦,等. 拓扑量子材料光电探测器研究进展[J]. 中国光学, 2021, 14(01): 43-65.

[19] Cai Y Q, Zhang G, Zhang Y W. Electronic properties of phosphorene/graphene and Phosphorene/Hexagonal boron nitride heterostructures[J]. The Journal of Physical Chemistry C, 2015, 119(24): 13929-13936.

[20] Le N B, Huan T D, Woods L M. Interlayer interactions in van der Waals heterostructures: electron and phonon properties[J]. ACS applied materials & interfaces, 2016, 8(9): 6286-6292. 

[21] Zhao X M, Bo M L, Huang Z K, et al. Heterojunction bond relaxation and electronic reconfiguration of WS2-and MoS2-based 2D materials using BOLS and DFT[J]. Applied Surface Science, 2018, 462(1): 508-516.

[22] Behera S K, Deb P. Controlling the bandgap in graphene/h-BN heterostructures to realize electron mobility for high performing FETs[J]. RSC advances, 2017, 7(50): 31393-31400. 

[23] Wang Y S, Song N H, Yang X H, et al. Tailoring the electronic properties of graphyne/blue phosphorene heterostructure via external electric field and vertical strain [J]. Chemical Physics Letters, 2019, 730: 277-282. 

[24] Lu N, Guo H Y, Li L, et al. MoS2/MX2 heterobilayers: Bandgap engineering via tensile strain or external electrical field[J]. Nanoscale, 2014, 6(5): 2879-2886. 

[25] Wang S K, Tian H Y, Ren C D, et al. Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide[J]. Scientific reports, 2018, 8(1): 12009. 

[26] Ren K, Sun M L, Luo Y, et al. First-principle study of electronic and optical properties of two-dimensional materials-based heterostructures based on transition metal dichalcogenides and boron phosphide[J]. Applied Surface Science, 2019, 476: 70-75. 

[27] Fang L, Liu R L, Tong X Y. Strain-induced electronic properties of van der Waals heterostructures based on tin dichalcogenides[J]. AIP ADVANCES, 2019, 9(5): 055324. 

[28] Huang L, Li J B. Tunable electronic structure of black phosphorus/blue phosphorus van der Waals pn heterostructure[J]. Applied Physics Letters, 2016, 108(8): 083101. 

[29] Tang K W, Qi W H, Li Y J, et al. Electronic Properties of van der Waals Heterostructure of Black Phosphorus and MoS2[J]. The Journal of Physical Chemistry C, 2018, 122(12): 7027-7032. 

[30] Yang F, Han J, Zhang L, et al. Adjustable electronic and optical properties of BlueP/MoS2 van der Waals heterostructure by external strain: a first-principles study[J]. Nanotechnology, 2020, 31(37): 375706. 

[31] Huang X Y, Cao Q L, Wan M J, et al. Electronic and Optical Properties of BP, InSe Monolayer and BP/InSe Heterojunction with Promising Photoelectronic Performance [J]. Materials, 2022, 15(18): 6214. 

[32] 郭瑞, 魏星, 曹末云, 等. AlAs/InSe范德华异质结构的光学和可调谐电子特性[J]. 化学学报, 2022, 80 (4): 526-534.

[33] Zhang W J, Chuu C P, Huang J K, et al. Ultrahigh-Gain Phototransistors Based on Graphene-MoS2 Heterostructures [J]. Advanced Materials, 2013, 25(25): 3456-3461.

[34] Deng Y X, Luo Z, Conrad N J, et al. Black Phosphorus-Monolayer MoS2 van der Waals Heterojunction P-N Diode[J]. ACS Nano, 2014, 8(8): 8292-8299.

[35] Ye L, Li H, Chen Z, et al. Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction[J]. Acs Photonics, 2016, 3(4): 692-699. 

[36] Bullock J, Amani M, Cho J, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature [J]. Nature Photonics, 2018, 12(10): 601-607.

[37] Gao A Y, Lai J W, Wang Y J, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures[J]. Nature Nanotechnology, 2019, 14: 217-222.

[38] Chen Y F, Tan C W, Wang Z, et al. Momentum-matching and band-alignment van der Waals heterostructures for high-efficiency infrared photodetection[J]. Science advances, 2022, 8(30): eabq1781. 

[39] Chen P, Pi L J, Li Z X, et al. GeSe/MoTe2 vdW heterostructure for UV–VIS–NIR photodetector with fast response[J]. Applied Physics Letters, 2022, 121(2): 021103.

[40] Li H Y, Zhang T, Yi Z X, et al. High Sensitive and Stable UV- Vis Photodetector Based on MoS2 / MoO3 vdW Heterojunction [J]. ACS applied materials & interfaces, 2024, 16(26): 33829-33837. 

[41] Vabbina P, Choudhary N, Chowdhury A A, et al. Highly Sensitive Wide Bandwidth Photodetector Based on Internal Photoemission in CVD Grown p-Type MoS2/Graphene Schottky Junction(Article)[J]. ACS Applied Materials and Interfaces, 2015, 7(28): 15206-15213. 

[42] Iqbal M Z, Khan S, Siddique S. Ultraviolet-light-driven photoresponse of chemical vapor deposition grown molybdenum disulfide/graphene heterostructured FET [J]. Applied Surface Science, 2018, 459(1): 853-859. 

[43] Rathi S, Lee I, Lim D, et al. Tunable electrical and optical characteristics in monolayer graphene and few-layer MoS2 heterostructure devices[J]. Nano Letters, 2015, 15(8): 5017-5024. 

[44] Lee I, Kang W T, Kim J E, et al. Photoinduced tuning of schottky barrier height in graphene/MoS2 heterojunction for ultrahigh performance short channel phototransistor[J]. ACS Nano, 2020, 14(6): 7574-7580. 

[45] Liu Y, Shivananju B N, Wang Y S, et al. Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene-Black Phosphorus Heterostructure[J]. ACS Appl Mater Interfaces, 2017, 9(41): 36137-36145. 

[46] Ye L, Wang P, Luo W J, et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure[J]. Nano Energy, 2017, 37: 53-60.

[47] Long M S, Gao A Y, Wang P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus[J]. Science advances, 2017, 3(6): e1700589.

[48] Wang B, Yuan J, Che M Q, et al. High-performance broadband photodetector based on PtSe2/MoS2 heterojunction from visible to near-infrared region [J]. Science China(Information Sciences), 2024, 67(3): 263-270.

[49] Lukman S, Ding L, Xu L, et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection[J]. Nature nanotechnology, 2021, 16(3): 354.

[50] Li K L, Du C H, Gao H L, et al. Ultrafast and Polarization-Sensitive ReS2/ReSe2 Heterostructure Photodetectors with Ambipolar Photoresponse[J]. ACS applied materials & interfaces, 2022, 14(29): 33589-33597.

[51] Lin Z T, Zhu W B, Zeng Y H, et al. Enhanced Photodetection Range from Visible to Shortwave Infrared Light by ReSe2/MoTe2 van der Waals Heterostructure[J]. Nanomaterials, 2022, 12(15): 2664.

[52] Jaffery S H A, Riaz M, Abbas Z, et al. Strong interlayer transition in a staggered gap GeSe/MoTe2 heterojunction diode for highly efficient visible and near‐infrared photodetection and logic inverter[J]. EcoMat. 2023, 5(3): e12307.

[53] Afzal A M, Iqbal M Z, Dastgeer G, et al. Ultrafast and Highly Stable Photodetectors Based on p-GeSe/n-ReSe2 Heterostructures[J]. ACS applied materials & interfaces, 2021, 13(40): 47882-47894.

[54] Hussain M, Jaffery S H A, Ali A, et al. NIR self-powered photodetection and gate tunable rectification behavior in 2D GeSe/MoSe2 heterojunction diode[J]. Scientific reports, 2021, 11(1): 3688.

[55] Du C H, Gao H L, Du W T, et al. High responsivity and broadband polarized photodetectors based on InSe/ReSe2 van der Waals heterostructures[J]. Journal of Alloys and Compounds, 2022, 919: 165586.

[56] Wang C, Ye J X, An Y K. Tailoring the band alignment and magnetic and optical properties of g-C3N4/WSe2 van der Waals heterostructures by vacancies and atomic doping[J]. Modern Physics Letters B, 2021, 35(34): 1-16. 

[57] Fu S, Wang D, Ma Z, et al. The first-principles study on the halogen-doped graphene/MoS2 heterojunction[J]. Solid State Communications, 2021, 334-335: 114366. 

[58] Lv X R, Liu G P, Mao B Y, et al. α-In2Se3/Nb-doped MoSh2 heterojunction: a first-principles study[J]. Semiconductor Science and Technology, 2024, 39(1): 015001.

[59] Yu Y L, Shen T, Long H R, et al. Doping Engineering in the MoS2/SnSe2 Heterostructure toward High-Rejection-Ratio Solar-Blind UV Photodetection[J]. Advanced Materials, 2022, 34(43): 2206486.

[60] Zhan Y X, Wu Z T, Zeng P Y, et al. High-Performance Self-Powered WSe2/ReS2 Photodetector Enabled via Surface Charge Transfer Doping[J]. ACS applied materials & interfaces, 2023, 15(47): 55043-55054.

[61] Lin G Y, Qian J H, Ding H K, et al. Harvesting strong photoluminescence of physical vapor deposited GeSn with record high deposition temperature[J]. Journal of Physics D: Applied Physics, 2023, 56(35): 355104. 

[62] 刘标. 二维半导体与金属异质结界面肖特基势垒调控的第一性原理研究[D]. 湖南大学, 2017.

[63] Huang L, Huo N J, Li Y, et al. Electric-field tunable band offsets in black phosphorus and MoS2 van der Waals pn heterostructure[J]. The journal of physical chemistry letters, 2015, 6(13): 2483-2488.

[64] Liao C W, Zhao Y P, Ouyang G. Strain-modulated band engineering in two-dimensional black phosphorus/MoS2 van der Waals heterojunction[J]. ACS omega, 2018, 3(11): 14641-14649. 

[65] 谭淼,张磊,梁万珍. 基于二维材料WX2构建的范德华异质结的结构和性质及应变效应的理论研究[J]. 物理化学学报, 2019, 35 (4): 385-393. 

[66] 展晓飞,邓增龙,聂锦兰,等. 石墨相氮化碳/蓝磷异质结的光催化性能研究[J]. 实验科学与技术, 2021, 19(3): 28-34.

[67] Liu B Y, Chen Y F, You C Y, et al. High performance photodetector based on graphene/MoS2/graphene lateral heterostructure with Schottky junctions[J]. Journal of Alloys and Compounds, 2019, 779: 140-146. 

[68] Kim D Y, Hashmi A, Hwang C Y, et al. Thickness dependent band gap and effective mass of BN/graphene/BN and graphene/BN/graphene heterostructures[J]. Surface science, 2013, 610: 27-32.

[69] Farooq M U, Hashmi A, Hong J. Thickness dependent optical properties of multilayer BN/graphene/BN[J]. Surface Science, 2015, 634: 25-30.

[70] Datta K, Khosru Q D M. Electronic properties of MoS2/MX2/MoS2 trilayer heterostructures: a first principle study[J]. ECS Journal of Solid State Science and Technology, 2016, 5(11): Q3001. 

[71] Datta K, Shadman A, Rahman E, et al. Trilayer TMDC Heterostructures for MOSFETs and Nanobiosensors[J]. Journal of Electronic Materials,.2017, 46(2): 1248–1260. 

[72] Xu L, Huang W Q, Hu W Y, et al. Two-dimensional MoS2-graphene-based multilayer van der Waals heterostructures: Enhanced charge transfer and optical absorption, and electric-field tunable Dirac point and band gap[J]. Chemistry of Materials, 2017, 29(13): 5504–5512.

[73] Xia C X, Du J, Fang L Z, et al. PtSe2/graphene hetero-multilayer: Gate-tunable Schottky barrier height and contact type[J]. Nanotechnology, 2018, 29(46): 465707. 

[74] Bafekry A, Yagmurcukardes M, Akgenc B, et al. Van der Waals heterostructures of MoS2 and Janus MoSSe monolayers on graphitic boron-carbon-nitride (BC3, C3N, C3N4 and C4N3) nanosheets: A first-principles study[J]. Journal of Physics D: Applied Physics, 2020, 53(35): 355106. 

[75] Han J, Yang F, Xu L, et al. Modulated electronic and optical properties of bilayer/trilayer Blue Phosphorene/MoX2 (X= S, Se) van der Waals heterostructures[J]. Surfaces and Interfaces, 2021, 25, 101228. 

[76] Liu S, Li X, Meng D, et al. Tunable electronic properties of MoS2/SiC heterostructures: A First-Principles study[J]. Journal of Electronic Materials, 2022, 51(7): 3714-3726.

[77] Cheng B T, Zhou Y, Jiang R M, et al. Structural, Electronic and Optical Properties of Trilayer Van der Waals Heterostructure[J]. Nanomaterials, 2023, 13(9): 1574.

[78] Cheng B T, Zhou Y, Jiang R M, et al. Graphene-Sandwiched Van der Waals Heterostructures for Photodetectors[C]// 2023 Photonics & Electromagnetics Research Symposium (PIERS), 2023, 656-663.

[79] Long M S, Liu E F, Wang P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4): 2254-2259.

[80] Yuan S F, Shen C F, Deng B C, et al. Air-Stable Room-Temperature Mid-Infrared Photodetectors Based on h-BN/Black Arsenic Phosphorus/h-BN Heterostructures[J]. Nano Letters, 2018, 18(5): 3172-3179. 

[81] Jiang M H, Zheng T, Zhang J L, et al. Gate-Modulated Polarity Transition and Polarization-Sensitive Photodetection Enabled by Sandwiching Anisotropic GeSe in vdW Heterojunction[J]. Advanced Optical Materials, 2024, 12(16): 2303217.

[82] Pan Y T, Zhu L Q, Lu L D, et al. Polarized Photodetectors Based on 2D 2H-MoTe2/1T'-MoTe2/MoSe2 Van Der Waals Heterojunction[J]. Advanced Functional Materials, 2024, 2407931. (in press)

[83] Yao J D, Zheng Z Q, Yang G W. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm[J]. Journal of Materials Chemistry C, 2016, 4(33): 7831-7840.

[84] Kim J S, Park S J, Jang H, et al. Highly sensitive, gate-tunable, room-temperature mid-infrared photodetection based on graphene–Bi2Se3 heterostructure[J]. ACS Photonics, 2017, 4(3): 482-488. 

[85] Yang C W, Tang H L, Sattar S, et al. Epitaxial Growth and Determination of Band Alignment of Bi2Te3–WSe2 Vertical van der Waals Heterojunctions[J]. ACS Materials Letters, 2020, 2(10): 1351-1359.

[86] Bafekry A, Obeid M M, Nguyen, C. D, et al. Graphene hetero-multilayer on layered platinum mineral jacutingaite (Pt2HgSe3): van der Waals heterostructures with novel optoelectronic and thermoelectric performances[J]. Journal of Materials Chemistry A, 2020, 8(26): 13248-13260.

[87] Kiemle J, Powalla L, Polyudov K, et al. Gate-Tunable Helical Currents in Commensurate Topological Insulator/Graphene Heterostructures[J]. ACS nano, 2022, 16(8): 12338-12344.

[88] Huang Z H, Jiang Y D, Han Q, et al. High responsivity and fast UV-Vis-SWIR photodetector based on Cd3As2/MoS2 heterojunction[J]. Nanotechnology, 2019, 31(6): 064001-061010. 

[89] Li C Q, Zhao Y F, Vera A, et al. Proximity-induced superconductivity in epitaxial topological insulator/ graphene/gallium heterostructures[J]. Nature materials, 2023, 22(5): 570-575.

[90] Thingstad E, Hutchinson J, Loss D, et al. Topological Interlayer Superconductivity in a van der Waals Heterostructure[J]. arXiv preprint arXiv: 2405.07927, 2024.

[91] Liu H W, Zhu X L , Sun X X, et al. Self-Powered Broadband Photodetectors Based on Vertically Stacked WSe2/Bi2Te3 p-n Heterojunctions[J]. ACS Nano, 2019, 13(11): 13573-13580.

[92] Zhang H B, Song Z L, Li D, et al. Near-infrared Photodetection Based on Topological Insulator P-N Heterojunction of SnTe/Bi2Se3[J]. Applied Surface Science, 2020, 509: 145290.


引用本文

赵语嫣, 程碑彤, 黄帅, 蒋若梅, 胡卫英, 张伟, 宋海智, 二维材料范德华异质结光电探测器研究进展[J]. 物理科学与技术研究, 2024; 4: (2) : 1-13.