期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Physical Sience and Technical Research. 2023; 3: (2) ; 28-43 ; DOI: 10.12208/j.pstr.20230011.

Graphene-based composites and their prospects for energy and environmental applications
基于石墨烯的复合材料及其在能源和环境应用中的前景

作者: 王晶 *

大连理工大学 辽宁大连

*通讯作者: 王晶,单位:大连理工大学 辽宁大连;

发布时间: 2023-09-30 总浏览量: 659

摘要

本文综述了基于石墨烯的复合材料及其在能源和环境领域中的应用前景,探讨了石墨烯复合材料的制备方法、特性及其在锂离子电池、超级电容器、太阳能电池及水处理等领域的创新应用。石墨烯作为一种具有独特二维结构的碳材料,因其卓越的电导率、高强度和大比表面积等物理化学特性,在能源存储、转换系统以及环境净化技术中表现出蓬勃的应用潜力。通过分析石墨烯基复合材料的制备技术、性能优势和在各应用领域中的进展,本文揭示了其在促进能源效率提升和环境保护方面的巨大潜能。尽管当前在商业化应用和大规模生产方面仍面临挑战,石墨烯复合材料预计将引领未来可持续能源技术和环境治理的新趋势。研究表明,跨学科合作和技术创新是开发和实现石墨烯复合材料广泛应用的关键。

关键词: 石墨烯;复合材料;应用

Abstract

This paper reviews graphene-based composites and their prospects for energy and environmental applications, and discusses the preparation methods and properties of graphene composites and their innovative applications in the fields of lithium-ion batteries, supercapacitors, solar cells and water treatment. Graphene, as a carbon material with a unique two-dimensional structure, has shown vigorous application potential in energy storage and conversion systems as well as environmental purification technologies due to its physicochemical properties, such as excellent electrical conductivity, high strength and large specific surface area. By analysing the preparation technology, performance advantages and progress of graphene-based composites in various applications, this paper reveals their great potential in promoting energy efficiency improvement and environmental protection. Despite the current challenges in commercial application and large-scale production, graphene composites are expected to lead the new trends in sustainable energy technologies and environmental governance in the future. The study suggests that interdisciplinary collaboration and technological innovation are key to developing and realising graphene composites for a wide range of applications.

Key words: Graphene; Composites; Applications

参考文献 References

[1] 常豪然,郭威,黄磊,等.高温超导材料研究进展[J].湖北大学学报:自然科学版, 2023, 45(1):89-96.

[2] Hidalgo-Manrique P, Lei X, Xu R, et al. Copper/graphene composites: a review[J]. Journal of materials science, 2019, 54: 12236-12289.

[3] Razaq A, Bibi F, Zheng X, et al. Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: From fabrication to applications[J]. Materials, 2022, 15(3): 1012.

[4] 彭博,肖运彬,顾家宝,陈梓钧,唐雁煌,朱刚,徐焕翔.聚合物/石墨烯复合材料制备与性能研究进展[J].中国塑料,2022, 36(04):190-197.

[5] 陆文星. 石墨烯增强复合材料板的力学行为研究[D].天津理工大学,2022.

[6] Sattar T. Current review on synthesis, composites and multifunctional properties of graphene[J]. Topics in Current Chemistry, 2019, 377: 1-45.

[7] Lawal A T. Graphene-based nano composites and their applications. A review[J]. Biosensors and Bioelectronics, 2019, 141: 111384.

[8] Wang B, Ruan T, Chen Y, et al. Graphene-based composites for electrochemical energy storage[J]. Energy storage materials, 2020, 24: 22-51.

[9] 夏心怡,叶鑫城,陈熠桢,蔡文智,黄茜.石墨烯复合材料的散热特点分析[J].电子技术,2023,52(04):258-259.

[10] 潘信诚,林政淇,杨柳,邓丽萍.石墨烯增强铜基复合材料制备工艺及性能的研究进展[J].机械工程材料,2023,47(01): 1-10.

[11] Güler Ö, Bağcı N. A short review on mechanical properties of graphene reinforced metal matrix composites[J]. Journal of Materials Research and Technology, 2020, 9(3): 6808-6833.

[12] Sahu D, Sutar H, Senapati P, et al. Graphene, graphene-derivatives and composites: fundamentals, synthesis approaches to applications[J]. Journal of Composites Science, 2021, 5(7): 181.

[13] Zhang Z, Liu M, Ibrahim M M, et al. Flexible polystyrene/graphene composites with epsilon-near-zero properties[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 1054-1066.

[14] 杨振涛. 基于储能的石墨烯复合材料性能研究[D].沈阳航空航天大学,2021.

[15] 方昱. 石墨烯增强复合材料纳米梁板结构动静态力学性能研究[D].浙江大学,2021.

[16] 于真鹤. 多层石墨烯/6063Al复合材料强韧化设计及断裂行为研究[D].哈尔滨工业大学,2021.

[17] Li Y, Feng Z, Huang L, et al. Additive manufacturing high performance graphene-based composites: A review[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105483.

[18] Li Y, Feng Z, Huang L, et al. Additive manufacturing high performance graphene-based composites: A review[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105483.

[19] Mostafavi E, Iravani S. MXene-graphene composites: a perspective on biomedical potentials[J]. Nano-Micro Letters, 2022, 14(1): 130.

[20] 聂慧芳,王玉杰.银/石墨烯复合材料研究进展[J].化工新型材料,2024,52(02):246-248.

[21] 张阳.磁性石墨烯复合材料的制备及应用研究进展[J].化学试剂,2023,45(12):18-25.

[22] 张晓青,姜庆伟,张守健,刘博文,王洪岗,严光茂.高强高导石墨烯增强铜基复合材料的研究进展[J].有色金属科学与工程,2023,14(05):641-650.

[23] 宋健,李天乐,李培,孙鑫丽,毕韶丹.氧化石墨烯复合材料对重金属的吸附作用[J].辽宁化工,2022,51(11):1606-1608.

[24] 胡洪亮,胡宇飞.石墨烯/硅藻土复合材料研究进展[J].应用化工,2022,51(10):3067-3070.

[25] 李壮. 石墨烯复合材料的制备及其电化学性能的研究[D].南京信息工程大学,2022.

[26] 邓卫斌,李铁虎,李昊,党阿磊.石墨烯/陶瓷复合材料的研究进展[J].固体火箭技术,2022,45(01):13-25.

[27] 周伟,侯红平,高亚非,石先超.石墨烯复合材料作为散热涂层在工业计算机上的应用[J].工业技术创新,2021,08(06): 5-9.

[28] 魏杰,李昊,张亚男,顾忠伟,胡玉冰,姜炜,周晋.石墨烯复合材料在电热防/除冰领域研究进展[J].中国材料进展,2022, 41(06):487-496.

[29] 陈振宇,肖春艳,刘宏,李少华,胡强,徐平.氧化石墨烯复合材料去除水中重金属研究综述[J].当代化工研究,2021 (23): 171-173.

[30] 谭海丰,侯梦晴,吴晨,贺春林,张滨.镍基石墨烯复合材料的研究进展[J].材料导报,2022,36(24):143-148.

[31] Wang Z, Huang J, Mao J, et al. Metal–organic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis[J]. Journal of materials chemistry A, 2020, 8(6): 2934-2961.

[32] Kumar A, Sharma K, Dixit A R. A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene[J]. Carbon letters, 2021, 31(2): 149-165.

[33] 程帅帅. 高性能石墨烯天然橡胶复合材料的制备及性能研究[D].中北大学,2021

[34] Lakra R, Kumar R, Sahoo P K, et al. A mini-review: Graphene based composites for supercapacitor application[J]. Inorganic Chemistry Communications, 2021, 133: 108929.

[35] Zhao Z, Bai P, Du W, et al. An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications[J]. Carbon, 2020, 170: 302-326.

[36] 李亚洲. 石墨烯表面改性与基体微合金化协同策略增强铜基复合材料的制备及其性能研究[D].长春工业大学,2021.

[37] Sun X, Huang C, Wang L, et al. Recent progress in graphene/polymer nanocomposites[J]. Advanced Materials, 2021, 33(6): 2001105.

[38] Abu-Nada A, Abdala A, McKay G. Removal of phenols and dyes from aqueous solutions using graphene and graphene composite adsorption: A review[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105858.

[39] Fatima N, Qazi U Y, Mansha A, et al. Recent developments for antimicrobial applications of graphene-based polymeric composites: A review[J]. Journal of Industrial and Engineering Chemistry, 2021, 100: 40-58.

[40] Naseer A, Ahmad F, Aslam M, et al. A review of processing techniques for graphene-reinforced metal matrix composites[J]. Materials and Manufacturing Processes, 2019, 34(9): 957-985.

[41] 李铮,方建华,林旺,谷科城,王顺祥.石墨烯增强金属基复合材料的研究进展[J].化学工程师,2021,35(08):51-54.

[42] 周成顺,张魁星,李丽萍.石墨烯复合材料电化学免疫传感器在肿瘤标志物检测中的应用[J].化学通报,2022,85(01): 44-51.

[43] 蔡粮臣,贾均红,杨鑫然,孙航,沈明杰,何乃如,杨杰.石墨烯增强铜基复合材料研究进展[J].材料科学与工艺,2021,29 (04):87-96.

[44] 耿佳琦,门园丽,刘晨,袁才登.磁性石墨烯复合材料制备与应用研究进展[J].化工进展,2022,41(01):277-285.

[45] 段笑.石墨烯改性碳纤维树脂基复合材料的制备及其性能[J].合成材料老化与应用,2021,50(02):115-117.

引用本文

王晶, 基于石墨烯的复合材料及其在能源和环境应用中的前景[J]. 物理科学与技术研究, 2023; 3: (2) : 28-43.