摘要
高温超导材料自1986年被发现以来,一直是凝聚态物理与材料科学研究的热点。这类材料能在高于液氮温度下展现出零电阻和完全抗磁性,为其在能源传输、磁性应用和交通等领域的实用化铺平了道路。本文全面梳理了高温超导材料的基础理论、各类材料的发展历程、制备技术、性能测试方法以及目前的应用现状和面临的挑战。从第一代基于铜氧化物的高温超导材料到最新发现的铁基超导材料,技术逐步成熟,应用前景广阔。同时,新型制备工艺和微观结构调控技术的进步,为提高材料性能和降低成本提供了可能。尽管存在着稳定性和成本等挑战,但通过不断地技术创新和应用拓展,高温超导材料预计将在未来发挥更为重要的作用。本文旨在为研究人员提供一个高温超导材料的发展概览,并对其应用前景进行分析。
关键词: 高温超导;材料;应用
Abstract
High-temperature superconducting materials have been a hot spot in condensed matter physics and materials science research since their discovery in 1986. Such materials can exhibit zero resistance and complete antimagnetism at temperatures higher than that of liquid nitrogen, paving the way for their practical application in fields such as energy transmission, magnetic applications and transportation. This paper provides a comprehensive overview of the fundamental theories of high-temperature superconducting materials, the development history of various types of materials, preparation techniques, performance testing methods, as well as the current status of their applications and the challenges they face. From the first generation of high-temperature superconducting materials based on copper oxides to the latest discovery of iron-based superconducting materials, the technology has gradually matured and the application prospect is broad. Meanwhile, advances in novel preparation processes and microstructure modulation techniques offer the possibility of improving material properties and reducing costs. Despite the challenges of stability and cost, high-temperature superconducting materials are expected to play a more important role in the future through continuous technological innovation and application expansion. The aim of this paper is to provide researchers with an overview of the development of high-temperature superconducting materials and to analyse the prospects for their applications.
Key words: High-temperature superconducting; Materials; Applications
参考文献 References
[1] 常豪然,郭威,黄磊,等.高温超导材料研究进展[J].湖北大学学报:自然科学版, 2023, 45(1):89-96.
[2] 邓汝乾.高温超导材料的研究进展和应用前景[J].中国科技纵横,2021,000(002):58-62.
[3] 殷超辉,陈逸雯,闫宏涛,等.铜氧化物高温超导体电子结构和超导机理的角分辨光电子能谱研究[J].中国科学:物理学、力学、天文学, 2023, 53(6):20-38.
[4] 韩汝珊,郭卫.高温超导体的电子结构、反铁磁交换和磁性超导机制[J].物理, 2003, 32(10):5.
[5] sun liling,wu qi.压力下铁基高温超导体中超导电性的消失与重现[J].Chinese Science Bulletin, 2023.
[6] 金明剑,杜晓纪,李晓航.高温超导体电磁响应特性的有限元分析[C]//第九届全国超导学术研讨会.0[2024-03-13].
[7] 孔繁泉,史明霞.高温超导体的电性和磁性研究[J].云南大学学报:自然科学版, 1998(S1):3.
[8] Fadly M. A Review of First-Generation High Temperature Superconductors[J]. Available at SSRN 4574097.
[9] 金之俭,洪智勇,赵跃,等.二代高温超导材料的应用技术与发展综述[J].上海交通大学学报, 2018(10):1155-1165.
[10] 由存,赵巍,王欣,et al.过渡金属轻元素化合物的高温高压制备[J].人工晶体学报, 2022, 51(5):12.
[11] 徐胜,唐虎,潘志刚,等.添加Dy2O3的YBa2Cu3O7-δ的临界电流密度特征[J].低温与超导, 2010, 038(009):34-37.
[12] Cucciniello N, Lee D, Feng H Y, et al. Superconducting niobium nitride: a perspective from processing, microstructure, and superconducting property for single photon detectors[J]. Journal of Physics: Condensed Matter, 2022, 34(37): 374003.
[13] Uglietti D. A review of commercial high temperature superconducting materials for large magnets: from wires and tapes to cables and conductors[J]. Superconductor Science and Technology, 2019, 32(5): 053001.
[14] 朱金华,朱汉山,王恩哲,等.高温超导电缆研究现状及应用场景分析[J].浙江电力, 2023, 42(7):26-37.
[15] 王培,陶军,齐海歌,等.温度和场冷间隙对高温超导磁悬浮系统弛豫的影响[J].低温物理学报, 2023(2):100-106.
[16] 邓娟,董姝婧,周骏,等.高温超导技术在电子战中的应用[J].电子信息对抗技术, 2023, 38(3):73-80.
[17] 姜达,余东洋,郑沾,等.面向量子计算的拓扑超导体材料,物理和器件研究[J].物理学报, 2022, 71(16):26.